Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Asian Journal of Plant Pathology
Year: 2017  |  Volume: 11  |  Issue: 3  |  Page No.: 139 - 147

Suppression of Colletotrichum gloeosporioides by Indigenous Phyllobacterium and its Compatibility with Rhizobacteria

Siti Nur Aisyah, Sulastri Sulastri, Retmi Retmi, Rahmi Henda Yani, Elly Syafriani, Lily Syukriani, Fatchiyah Fatchiyah, Amri Bakhtiar and Jamsari Jamsari    

Abstract: Background and Objective: Plant-associated bacteria, such as Phyllobacterium play a significant role in protecting plant from pathogenic fungal infection. These Phyllobacterium are known to be existed in such a microbial community with various microbes thus leading to elevated disease suppression. The aim of this study was to assess the fungal suppression activity of indigenous Phyllobacterium isolates and its strain/species compatibility with rhizobacteria. Materials and Methods: Two indigenous Phyllobacterium isolates were identified using 16S rRNA gene sequence and its antifungal activities were tested against several phytopathogenic fungus. Further antagonistic assay was performed to compare the efficacy of cell culture and cell-free supernatants. Its compatibility was assayed by performing the antifungal assay using the combination of these Phyllobacterium isolates with rhizobacteria ones. Data were statistically analyzed using one-way analysis of variance and the significance was further processed using Duncan’s new multiple range test with a p<0.05. Results: Both isolates (UBCF_01 and UBCF_13), identified as Serratia plymuthica, exhibited higher suppression activity against Colletotrichum gloeosporioides compared to Fusarium oxysporum and Sclerotium rolfsii. Both isolates revealed opposite trend in their activities resulted from cultured cells and cell-free supernatants. Furthermore, the better suppression efficacy of the culture supernatants was resulted from single cultured cells, instead of co-culture. However, both isolates displayed quite poor compatibility with rhizobacteria isolates. Conclusion: These indigenous Phyllobacterium showed promising ability to be used as biocontrol agents for anthracnose. The application of its culture supernatants offered the less hazardous option of biological control implementation. However, their poor compatibility, even with the same species (rhizospheric UBCR_12) might be occurred due to habitat differences.

Cited References   |    Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility