Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
AJP: Endocrinology and Metabolism
Year: 2010  |  Volume: 299  |  Issue: 2  |  Page No.: 318 - 324

GLP-1 treatment reduces endogenous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet

E. T Parlevliet, J. E de Leeuw van Weenen, J. A Romijn and H. Pijl    

Abstract:

Glucagon-like peptide-1 (GLP-1) improves insulin sensitivity in humans and rodents. It is currently unknown to what extent the (metabolic) effects of GLP-1 treatment are mediated by central GLP-1 receptors. We studied the impact of central GLP-1 receptor (GLP-1R) antagonism on the metabolic effects of peripheral GLP-1 administration in mice. High-fat-fed insulin-resistant C57Bl/6 mice were treated with continuous subcutaneous infusion of GLP-1 or saline (PBS) for 2 wk, whereas the GLP-1R antagonist exendin-9 (EX-9) and cerebrospinal fluid (CSF) were simultaneously infused in the left lateral cerebral ventricle (icv). Glucose and glycerol turnover were determined during a hyperinsulinemic euglycemic clamp. VLDL-triglyceride (VLDL-TG) production was determined in hyperinsulinemic conditions. Our data show that the rate of glucose infusion necessary to maintain euglycemia was significantly increased by GLP-1. Simultaneous icv infusion of EX-9 diminished this effect by 62%. The capacities of insulin to stimulate glucose disposal and inhibit glucose production were reinforced by GLP-1. Simultaneous icv infusion of EX-9 significantly diminished the latter effect. Central GLP-1R antagonism alone did not affect glucose metabolism. Also, GLP-1 treatment reinforced the inhibitory action of insulin on VLDL-TG production. In conclusion, peripheral administration of GLP-1 reinforces the ability of insulin to suppress endogenous glucose and VLDL-TG production (but not lipolysis) and boosts its capacity to stimulate glucose disposal in high-fat-fed C57Bl/6 mice. Activation of central GLP-1Rs contributes substantially to the inhibition of endogenous glucose production by GLP-1 treatment in this animal model.

View Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility