Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

The American Journal of Physiology - Cell Physiology

Year: 2010  |  Volume: 298  |  Issue: 6  |  Page No.: 1376 - 1387

Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase

F Waheed, P Speight, G Kawai, Q Dan, A Kapus and K. Szaszi

Abstract

Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular K+ concentration, the lipophilic cation tetraphenylphosphonium, or l-alanine, which is taken up by electrogenic Na+ cotransport) all provoke robust phosphorylation of ERK in LLC-PK1 and Madin-Darby canine kidney (MDCK) cells. Importantly, inhibition of ERK prevented the depolarization-induced activation of Rho. Searching for the underlying mechanism, we have identified the GTP/GDP exchange factor GEF-H1 as the ERK-regulated critical exchange factor responsible for the depolarization-induced Rho activation. This conclusion is based on our findings that 1) depolarization activated GEF-H1 but not p115RhoGEF, 2) short interfering RNA-mediated GEF-H1 silencing eliminated the activation of the Rho pathway, and 3) ERK inhibition prevented the activation of GEF-H1. Moreover, we found that the Na+-K+ pump inhibitor ouabain also caused ERK, GEF-H1, and Rho activation, partially due to its depolarizing effect. Regarding the functional consequences of this newly identified pathway, we found that depolarization increased paracellular permeability in LLC-PK1 and MDCK cells and that this effect was mitigated by inhibiting myosin using blebbistatin or a dominant negative (phosphorylation incompetent) MLC. Taken together, we propose that the ERK/GEF-H1/Rho/ROK/pMLC pathway could be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and regulate paracellular transport in the tubular epithelium.

View Fulltext