Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
The American Journal of Physiology - Cell Physiology
Year: 2010  |  Volume: 299  |  Issue: 1  |  Page No.: 128 - 138

Estrogen receptor mediates the effects of pseudoprotodiocsin on adipogenesis in 3T3-L1 cells

J Xiao, N. l Wang, B Sun and G. p. Cai    


Estrogen receptors (ERs) play a pivotal role in adipogenesis; therefore, compounds targeting ERs may also affect fat formation. Recent studies have shown that the Dioscorea plant (commonly called yam) exhibits an antiobesity effect on rodents. However, the active compounds and underlying mechanisms responsible for this effect are not yet fully understood. We evaluated the effects of pseudoprotodiocsin (PPD), a steroid saponin from Dioscorea nipponica Makino (a type of Dioscorea), on adipogenesis and the mechanisms underlying this effect. Treatment with PPD at the onset of adipogenic differentiation resulted in significantly decreased adipogenesis in both in vitro and in vivo experimental systems. An increased amount of ER mRNA, protein, and the accumulation of ER in the nucleus were also observed. However, the expression pattern of ERβ was not altered. Furthermore, the antiadipogenic effect of PPD was found to be ER dependent. It was also accompanied by the decreased expression of several genes involved in adipogenesis, including lipoprotein lipase (LPL), leptin, CCAAT/enhancer-binding-protein- (C/EBP), and peroxisome proliferator-activated receptor- (PPAR), as well as the increased expression of some negative factors of adipogenesis, including preadipocyte factor 1 (Pre-1), GATA-binding protein 2 (GATA-2), GC-induced leucine-zipper protein (GILZ), and C/EBP homologous protein (CHOP-10). In addition to its estrogenic action, PPD also abolished the p38 mitogen-activated protein kinase (p38 MAPK) activation. Our results suggest that PPD inhibits adipogenesis in an ER-dependent manner and induces the expression of ER. These findings may provide a lead toward a novel agent that can be used to treat obesity.

View Fulltext    |   Related Articles   |   Back
  Related Articles

No Article Found
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility