Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
The American Journal of Physiology - Cell Physiology
Year: 2009  |  Volume: 297  |  Issue: 2  |  Page No.: 389 - 396

ROS and PDFG-{beta} receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration

H Shimizu, Y Hirose, F Nishijima, Y Tsubakihara and H. Miyazaki    


Patients with chronic renal failure are at greater risk of developing atherosclerosis than healthy individuals, and recent data suggest that the putative uremic toxin indoxyl sulfate (IS) promotes the pathogenesis of atherosclerosis. The present study examined the effects of IS on vascular smooth muscle cells (VSMCs) with respect to reactive oxygen species (ROS), platelet-derived growth factor (PDGF) receptors, and mitogen-activated protein kinases (MAPKs). IS induced the migration and proliferation of VSMCs and synergistically enhanced their PDGF-induced migration as well as proliferation. The effects of PDGF were promoted after a 24-h incubation with IS despite the absence of IS during PDGF stimulation. Intracellular ROS levels were increased in the presence of IS, and PDGF-dependent ROS production was augmented by a prior 24-h incubation with IS even in the absence of IS during PDGF stimulation. These data suggest that IS increases the sensitivity of VSMCs to PDGF. IS also phosphorylated PDGF-β-receptors and upregulated PDGF-β receptor but not -receptor protein expression in the absence of exogenous PDGF. The NADPH oxidase inhibitor diphenylene iodonium blocked IS-dependent increase in receptor expression. Administration of IS to nephrectomized rats also elevated receptor protein expression in arterial VSMCs. Inhibitors of NADPH oxidase, PDGF-β receptors, extracellular-regulated protein kinase (ERK), and p38 MAPK all inhibited IS-induced VSMCs migration and proliferation. Taken together, these findings indicate that IS induces the migration as well as proliferation of VSMCs through PDGF-β receptors and that ROS generation is critically involved in this process, which promotes the development of atherosclerosis.

View Fulltext    |   Related Articles   |   Back
  Related Articles

No Article Found
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility