Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
American Journal of Psychiatry
Year: 2010  |  Volume: 167  |  Issue: 12  |  Page No.: 1489 - 1498

Alterations in Metabotropic Glutamate Receptor 1{alpha} and Regulator of G Protein Signaling 4 in the Prefrontal Cortex in Schizophrenia

D. W Volk, S. M Eggan and D. A. Lewis    

Abstract: Objective:

Certain cognitive deficits in individuals with schizophrenia have been linked to disturbed gamma-aminobutyric acid (GABA) and glutamate neurotrans-mission in the prefrontal cortex. Thus, it is important to understand how the mechanisms that regulate GABA and glutamate neurotransmission are altered in schizophrenia. For example, group I metabo-tropic glutamate receptors (mGluR1, mGluR5) modulate both GABA and gluta-mate systems. In addition, regulator of G protein signaling 4 (RGS4) reduces intra-cellular signaling through several different G protein-coupled receptors, including group I mGluRs. Finally, the endocannabinoid system plays an important role in regulating GABA and glutamate neurotrans-mission. The status of endocannabinoid ligands, such as 2-arachidonoylglycerol, can be inferred in part through measures of diacylglycerol lipase and monoglyceride lipase, which synthesize and degrade 2-arachidonoylglycerol, respectively.

Method:

Quantitative polymerase chain reaction was used to measure mRNA levels for group I mGluRs, RGS4, and markers of the endocannabinoid system in the prefrontal cortex Brodmann's area 9 of 42 schizophrenia subjects and matched normal comparison subjects. Similar analyses in monkeys chronically exposed to haloperidol, olanzapine, or placebo were also conducted.

Results:

Schizophrenia subjects had higher mRNA levels for mGluR1 and lower mRNA levels for RGS4, and these differences did not appear to be attributable to antipsychotic medications or other potential confounds. In contrast, no differences between subject groups were found in mRNA levels for endocannabinoid synthesizing and metabolizing enzymes.

Conclusions:

Together, higher mGluR1 and lower RGS4 mRNA levels may represent a disturbed "molecular hub" in schizophrenia that may disrupt the function of prefrontal cortical networks, including both GABA and glutamate systems.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility