Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Asian Journal of Information Technology
Year: 2017  |  Volume: 16  |  Issue: 2  |  Page No.: 206 - 211

An Entropy based Mean Score Feature Selection Method for Identification of Biomarkers using Mirna Expression Profiles for Cancer Classification

M. Anidha and K. Premalatha    

Abstract: MicroRNAs are small non-coding RNA molecules which are important developments in the cancer biology. miRNA microarrays are useful tools to identify potential biomarkers for variety of cancers. Due to high dimensionality of microarrays, it is very hard to identify cancer oncogenes and classify tumor samples. Feature selection is very essential task in the process of classification and identification of biomarker genes by selecting relevant genes. In this research, Entropy Based Mean Score (EBMS) is employed to identify the biomarker genes in miRNA microarrays. This is based on Fisher score which has the benefits of information gain and achieves maximum classification accuracy. The proposed research is tested on benchmark datasets with SVM and ANN for classification. The experimental results show that the EBMS method outperforms the existing methods and it is suitable for effective feature selection.

Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility