Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
American Journal of Infectious Diseases
Year: 2005  |  Volume: 1  |  Issue: 1  |  Page No.: 66 - 72

Interaction of a C-terminal Truncated Hepatitis C Virus Core Protein with Plasmid DNA Vaccine Leads toin vitro Assembly of Heterogeneous Virus-like Particles

Nelson Acosta-Rivero, Joanna Poutou, Alexis Mussachio, Viviana Falcon, Yaraima Aguilera, Armando Rodriguez, Angel Perez, Julio C. Aguilar, Maria C de la Rosa, Felix Alvarez, Juan Morales-Grillo, Juan Kouri and Santiago Duenas-Carrera    

Abstract: Recently, it has been shown that HCV core proteins (HCcAg) with C-terminal deletions assemble in vitro into virus-like particles (VLPs) in the presence of structured RNA molecules. Results presented in this work showed that a truncated HCcAg variant covering the first 120 aa (HCcAg.120) with a 32 aa N-terminal fusion peptide (6xHistag-XpressTMepitope) interacts with plasmid DNA vaccine. Interestingly, the buoyant density of VLPs containing HCcAg.120 in CsCl gradients changed from 1.15-1,17 g mL1 to 1.30-1.34 g mL1 after addition of plasmid DNA to assembly reactions. In addition, a delay in electrophoretic mobility of HCcAg.120-plasmid samples on agarose gels was observed indicating a direct interaction between VLPs and nucleic acids. Remarkably, addition of either plasmid DNA or tRNA to assembly reactions leaded to heterogeneous and larger VLPs formation than those observed in HCcAg.120 assembly reactions. VLPs containing HCcAg.120 induced a specific IgG antibodies in mice that reacted with hepatocytes from HCV-infected patients. VLPs obtained in this work would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure. Besides, the capacity of particles containing HCcAg.120 to interact with nucleic acids could be used in the development of DNA vaccines and viral vectors based on these particles.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility