Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
American Journal of Applied Sciences
Year: 2009  |  Volume: 6  |  Issue: 11  |  Page No.: 1948 - 1959

From Feature Selection to Building of Bayesian Classifiers: A Network Intrusion Detection Perspective

Kok-Chin Khor, Choo-Yee Ting and Somnuk-Phon Amnuaisuk    

Abstract: Problem statement: Implementing a single or multiple classifiers that involve a Bayesian Network (BN) is a rising research interest in network intrusion detection domain. Approach: However, little attention has been given to evaluate the performance of BN classifiers before they could be implemented in a real system. In this research, we proposed a novel approach to select important features by utilizing two selected feature selection algorithms utilizing filter approach. Results: The selected features were further validated by domain experts where extra features were added into the final proposed feature set. We then constructed three types of BN namely, Naive Bayes Classifiers (NBC), Learned BN and Expert-elicited BN by utilizing a standard network intrusion dataset. The performance of each classifier was recorded. We found that there was no difference in overall performance of the BNs and therefore, concluded that the BNs performed equivalently well in detecting network attacks. Conclusion/Recommendations: The results of the study indicated that the BN built using the proposed feature set has less features but the performance was comparable to BNs built using other feature sets generated by the two algorithms.

View Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility