Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Acta Biochimica et Biophysica Sinica
Year: 2010  |  Volume: 42  |  Issue: 10  |  Page No.: 709 - 716

Large-scale proteome investigation in wild relatives (A, B, and D genomes) of wheat

K. H Kim, A. H. M Kamal, K. H Shin, J. S Choi, H. Y Heo and S. H. Woo    


Large-scale proteomics of three wild relatives of wheat grain (A, B, and D genomes) were analyzed by using multidimensional protein identification technology coupled to liquid chromatography quadruple mass spectrometry. A total of 1568 (peptide match ≥1) and 255 (peptide match ≥2) unique proteins were detected and classified, which represents the most wide-ranging proteomic exploitation to date. The development of standard proteomes exhibiting all of the proteins involved in normal physiology will facilitate the delineation of disease/defense, metabolism, energy metabolism, and protein synthesis. A relative proteome exploration of the expression patterns indicates that proteins are involved in abiotic and biotic stress. Functional category analysis indicates that these differentially expressed proteins are mainly involved in disease/defense (15.38%, 21.26%, and 16.78%), metabolism (8.39%, 12.07%, and 14.09%), energy metabolism (11.19%, 11.49%, and 13.42%), protein synthesis (9.09%, 9.20%, and 8.72%), cell growth and division (9.09%, 4.60%, and 6.04%), cellular organization (4.20%, 5.75%, and 5.37%), development (6.29%, 2.87%, 3.36%), folding and stability (6.29%, 8.62%, and 8.05%), signal transduction (11.19%, 7.47%, and 8.05%), storage protein (4.20%, 1.72%, and 2.01%), transcription (5.59%, 5.17%, and 4.03%), and transport facilitation (1.40%, 1.15%, and 3.36%) in A, B, and D genomes, respectively. Here, we reported genome-specific protein interaction network using Cytoscape software, which provides further insight into the molecular functions and mechanism of biochemical pathways. We provide a promising understanding about the expressed proteins and protein functions. Our approach should be applicable as a marker to assist in breeding or gene transfer for quality and stress research of cultivated wheat.

View Fulltext    |   Related Articles   |   Back
  Related Articles

No Article Found
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility