Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

Acta Biochimica et Biophysica Sinica

Year: 2009  |  Volume: 41  |  Issue: 12  |  Page No.: 1044 - 1052

Modeling of protein refolding from inclusion bodies

T Zhang, X Xu, L Shen, Y Feng, Z Yang, Y Shen, J Wang, W Jin and X. Wang


Overexpression of foreign proteins in Escherichia coli often leads to the formation of inclusion bodies (IBs), which becomes the major bottleneck in the preparation of recombinant proteins and their applications. In the present study, 36 proteins from IBs were refolded using a simple refolding method. Refolding yields of these proteins were defined as the percentage of soluble proteins following dilution refolding in the amount of denatured proteins in the samples before diluting into refolding buffer. Furthermore, a mathematical model was deduced to evaluate the role of biochemical properties in the protein refolding. Our results indicated that under the experimental conditions, isoelectric point of proteins might be mostly contributing to the high efficacy of protein refolding since the increment of one unit resulted in a decrease of 14.83% in the refolding yield. Other important mediators were components of protein secondary structure and the molecular weight (R2 = 0.98, P = 0.000, F-test). Six proteins with low efficiency in the protein refolding possessed relatively low isoelectric points. Furthermore, refolding yields of six additional proteins from IBs were predicted and further validated by refolding the proteins under the same conditions. Therefore, the model of protein refolding developed here could be used to predict the refolding yields of proteins from IBs through a simple method. Our study will be suggestive to optimize the methods for protein refolding from IBs according to their intrinsic properties.

View Fulltext