Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Circulation: Heart Failure
Year: 2010  |  Volume: 3  |  Issue: 3  |  Page No.: 420 - 430

Analysis of Metabolic Remodeling in Compensated Left Ventricular Hypertrophy and Heart Failure

T Kato, S Niizuma, Y Inuzuka, T Kawashima, J Okuda, Y Tamaki, Y Iwanaga, M Narazaki, T Matsuda, T Soga, T Kita, T Kimura and T. Shioi    

Abstract: Background—

Congestive heart failure (CHF) is associated with a change in cardiac energy metabolism. However, the mechanism by which this change is induced and causes the progression of CHF is unclear.

Methods and Results—

We analyzed the cardiac energy metabolism of Dahl salt-sensitive rats fed a high-salt diet, which showed a distinct transition from compensated left ventricular hypertrophy to CHF. Glucose uptake increased at the left ventricular hypertrophy stage, and glucose uptake further increased and fatty acid uptake decreased at the CHF stage. The gene expression related to glycolysis, fatty acid oxidation, and mitochondrial function was preserved at the left ventricular hypertrophy stage but decreased at the CHF stage and was associated with decreases in levels of transcriptional regulators. In a comprehensive metabolome analysis, the pentose phosphate pathway that regulates the cellular redox state was found to be activated at the CHF stage. Dichloroacetate (DCA), a compound known to enhance glucose oxidation, increased energy reserves and glucose uptake. DCA improved cardiac function and the survival of the animals. DCA activated the pentose phosphate pathway in the rat heart. DCA activated the pentose phosphate pathway, decreased oxidative stress, and prevented cell death of cultured cardiomyocytes.

Conclusions—

Left ventricular hypertrophy or CHF is associated with a distinct change in the metabolic profile of the heart. DCA attenuated the transition associated with increased energy reserves, activation of the pentose phosphate pathway, and reduced oxidative stress.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility