Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Year: 2010  |  Volume: 97  |  Issue: 4  |  Page No.: 893 - 904

Consistent selection of the number of clusters via crossvalidation

J. Wang    


In cluster analysis, one of the major challenges is to estimate the number of clusters. Most existing approaches attempt to minimize some distance-based dissimilarity measure within clusters. This article proposes a novel selection criterion that is applicable to all kinds of clustering algorithms, including distance based or non-distance based algorithms. The key idea is to select the number of clusters that minimizes the algorithm's instability, which measures the robustness of any given clustering algorithm against the randomness in sampling.Anovel estimation scheme for clustering instability is developed based on crossvalidation. The proposed selection criterion's effectiveness is demonstrated on a variety of numerical experiments, and its asymptotic selection consistency is established when the dataset is properly split.

View Fulltext    |   Related Articles   |   Back
  Related Articles

No Article Found
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility