Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Biometrika
Year: 2010  |  Volume: 97  |  Issue: 2  |  Page No.: 295 - 304

Sufficient dimension reduction through discretization-expectation estimation

L Zhu, T Wang and L. Ferre    

Abstract:

In the context of sufficient dimension reduction, the goal is to parsimoniously recover the central subspace of a regression model. Many inverse regression methods use slicing estimation to recover the central subspace. The efficacy of slicing estimation depends heavily upon the number of slices. However, the selection of the number of slices is an open and long-standing problem. In this paper, we propose a discretization-expectation estimation method, which avoids selecting the number of slices, while preserving the integrity of the central subspace. This generic method assures root-n consistency and asymptotic normality of slicing estimators for many inverse regression methods, and can be applied to regressions with multivariate responses. A BIC-type criterion for the dimension of the central subspace is proposed. Comprehensive simulations and an illustrative application show that our method compares favourably with existing estimators.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility