Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Biometrika
Year: 2009  |  Volume: 96  |  Issue: 2  |  Page No.: 307 - 322

Hierarchically penalized Cox regression with grouped variables

S Wang, B Nan, N Zhu and J. Zhu    

Abstract:

In many biological and other scientific applications, predictors are often naturally grouped. For example, in biological applications, assayed genes or proteins are grouped by biological roles or biological pathways. When studying the dependence of survival outcome on these grouped predictors, it is desirable to select variables at both the group level and the within-group level. In this article, we develop a new method to address the group variable selection problem in the Cox proportional hazards model. Our method not only effectively removes unimportant groups, but also maintains the flexibility of selecting variables within the identified groups. We also show that the new method offers the potential for achieving the asymptotic oracle property.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility