• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. International Journal of Agricultural Research
  2. Vol 3 (1), 2008
  3. 27-39
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

International Journal of Agricultural Research

Year: 2008 | Volume: 3 | Issue: 1 | Page No.: 27-39
DOI: 10.3923/ijar.2008.27.39

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Article Trend



Total views 370

Search


Authors


Manal M. Hefny

Country: Egypt

A.A. Aly

Country: Egypt

Keywords


  • Maize (Zea mays)
  • nitrogen use efficiency
  • nitrogen uptake
  • grain yield
  • yield components
  • phenotypic correlation
Research Article

Yielding Ability and Nitrogen Use Efficiency in Maize Inbred Lines and Their Crosses

Manal M. Hefny and A.A. Aly
A field experiment was carried out to study the grain yield and Nitrogen Use Efficiency (NUE) components of 16 inbred lines of exotic yellow maize and their crosses. The experiment was cropped at two nitrogen fertilizers; low (70 kg f-1) and high (140 kg f-1), split-plot design was used. The results indicated that, all measured traits were affected significantly by N levels, genotypes and the interaction, except days to 50% tasseling and silking of inbred lines which were not affected by N levels and the N x genotype interaction. N deficiency caused delay in flowering time for male and female inflorescence, accelerated leaf senescence, reduced total dry matter production, N-uptake by plants, grain yield components and grain protein percentage. On the other hand, nitrogen use efficiency for dry matter and grain production and nitrogen harvest index were increased under limited soil N. Inbred lines showed severe reduction for the above variables as compared to crosses. The inbred lines 4, 9, 13 and 15 were distinguished for their superiority in grain yield, nitrogen harvest index, harvest index, nitrogen use efficiency for grain, N-uptake and protein percentage. Three lines, 13, 15 and 16 were the earliest in flowering and represented the highest stay green percentage. While, the inbred lines 1, 8 and 14 were the most N-inefficient for grain production and the lowest for grain yield. In relation to crosses, high nitrogen harvest index, harvest index and nitrogen use efficiency for grain were shown by the crosses (4x1), (8x7), (9x10), (9x12) and (13x15). The crosses (4x1), (9x10), (13x15) and (13x16) surpassed the check and recorded the highest grain yield. The highest stay green percentage was revealed by the single cross Pioneer 3062 followed by the crosses (4x1), (13x15) and (13x16). It is recommended to use the inbred lines; 4, 9, 13 and 15, as a N-efficient source for further studies, whereas using the crosses; (4x1), (8x7), (9x10), (9x12) and (13x15) as N-efficient hybrids for under N limited cultivation. Phenotypic correlation coefficients were higher at low N compared with high application rate. High grain yield was significantly associated with delayed leaf senescence, nitrogen harvest index, harvest index, nitrogen use efficiency for grain and yield plant-1. High nitrogen use efficiency for grain production correlated positively with high yield, yield plant-1, NHI and HI. N-uptake was found to be a function of growth rate at both levels of N fertilizer.
PDF Fulltext XML References Citation

How to cite this article

Manal M. Hefny and A.A. Aly, 2008. Yielding Ability and Nitrogen Use Efficiency in Maize Inbred Lines and Their Crosses. International Journal of Agricultural Research, 3: 27-39.

DOI: 10.3923/ijar.2008.27.39

URL: https://scialert.net/abstract/?doi=ijar.2008.27.39

Related Articles

Heterosis and Combining Ability in Maize using Diallel Crosses among Seven New Inbred Lines
Variation in Root Water and Nitrogen Uptake and their Interactive Effects on Growth and Yield of Spring Wheat and Barley Genotypes

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved