Background and Objective: Cryptococcus neoformans (C. neoformans) is an emerging opportunistic fungal pathogen, which usually causes infection in immunocompromised hosts. Limited antifungal drugs are available to manage cryptococcal meningitis, which requires new effective class of drugs with less toxicity. The aims of the study were to enhance the production of antifungal compound from a new strain of marine Nocardiopsis synnemataformans AF1 against C. neoformans using statistical approach, to determine the molecular weight of the purified compound and to evaluate the effect of antifungal compound against the major virulence factors of C. neoformans, namely capsule and melanin. Materials and Methods: A new strain was screened and isolated from marine sediments based on antagonistic assay against C. neoformans. The antifungal compound was produced using Oyster shells as the substrate. The solid state cultural conditions were selected by one factor, time method and optimized by using response surface methodology. The antifungal compound was extracted using xylene and purified using HPLC. The purified fraction showing inhibitory action against the C. neoformans capsule growth and melanized cells were studied using MALDI-TOF MS. The minimum inhibitory concentration was determined using dilution method. Cytotoxicity was observed by HepG2 cell line. One-way ANOVA and t-test performed to test statistical significance for multiple comparisons. Results: The optimized condition to produce the antifungal compound from the new strain AF1 are found to be, 50% initial moisture content, 2% yeast extract, Oyster shells with the particle size of 16 and temperature at 40°C. The antifungal compound exhibits a significant reduction in C. neoformans cells, capsule size (30.18%) and melanized cells (99.3%). The MIC for the purified compound is estimated to be 200μg mL1. The MALDI-TOF MS estimated the molecular weight as 242 Da. Conclusion: The results of this study show that the new strain N. synnemataformans AF1 isolated from marine environment exhibited potential antagonistic activity against C. neoformans. PDFFulltextXMLReferencesCitation
How to cite this article
Sudarshan Singh Rathore, Aishwarya Mathivanan, Abirami Ravindran, Ponnusami Venkatachalam and Jayapradha Ramakrishnan, 2017. Potential Anticryptococcal Compound from Marine Nocardiopsis synnemataformans. Journal of Biological Sciences, 17: 157-170.