Subscribe Now Subscribe Today
Science Alert
Curve Top
Journal of Applied Sciences
  Year: 2009 | Volume: 9 | Issue: 5 | Page No.: 924-930
DOI: 10.3923/jas.2009.924.930
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Improved Joint Probabilistic Data Association Filter for Multi-Target Tracking in Wireless Sensor Networks

T. Yousefi Rezaii and M.A. Tinati

In this study the Regularized and simplified Monte Carlo-Joint Probabilistic Data Association Filter (RMC-JPDAF) is proposed and applied to the classical problem of multiple target tracking in a cluttered area. To encounter with the data association problem that arises due to unlabeled measurements in the presence of clutter, we have used the Joint Probabilistic Data Association Filter (JPDAF). The Monte Carlo methods are used in order to the fact that they have the ability to estimate any general state-space model with nonlinear and non-Gaussian functions for target dynamics and measurements likelihood. The Conventional implementation of Monte Carlo-JPDAF (MC-JPDAF) uses the resampling stage in order to reduce the variance of samples (called degeneracy problem); however this procedure itself causes another problem called sample impoverishment phenomenon, which is unavoidable and the tracking performance will decrease. So, we propose to use the regularized resampling stage instead, to counteract this shortcoming. Finally, the target dynamics model is used as the proposal distribution in MC-JPDAF, in order to decrease the computational cost while the performance of the tracking system is nearly maintained. The simulation results of the proposed system are presented and compared with those of the standard Monte Carlo implementation of FPDAF and the performance improvement of the proposed algorithm is proven.
PDF Fulltext XML References Citation Report Citation
  •    A Distributed Energy-aware Clustering Algorithm for Life Time Enhancement of Wireless Sensor Network
  •    Scheduling Quality Related Activities in Incremental Software Development Projects Based on Monte Carlo Simulation
How to cite this article:

T. Yousefi Rezaii and M.A. Tinati, 2009. Improved Joint Probabilistic Data Association Filter for Multi-Target Tracking in Wireless Sensor Networks. Journal of Applied Sciences, 9: 924-930.

DOI: 10.3923/jas.2009.924.930






Curve Bottom