Subscribe Now Subscribe Today
Science Alert
 
Blue
   
Curve Top
Journal of Applied Sciences
  Year: 2008 | Volume: 8 | Issue: 7 | Page No.: 1179-1187
DOI: 10.3923/jas.2008.1179.1187
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Scale Invariant Feature Transform Technique for Weed Classification in Oil Palm Plantation

Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa , Aini Hussain and Saifudin Razali

Abstract:
This study presents a new and robust technique using Scale Invariant Feature Transform (SIFT) for weed classification in oil palm plantation. The proposed SIFT classification technique was developed to overcome problem in real application of image processing such as varies of lighting densities, resolution and target range which contributed to classification accuracy. In this study, SIFT classification algorithm is used to extract a set of feature vectors to represent the input image. The set of feature vectors then can be used to classify weed. In general, the weeds can be classified as either broad or narrow. Based on this classification, a decision will be made to control the strategy of weed infestation in oil palm plantations. The effectiveness of the robust SIFT technique has been tested offline where the input images were captured under varies conditions such as different lighting effects, ambiguity resolution values, variable range of object and many sizes of weed which simulate the actual field conditions. The proposed SIFT resulted in over 95.7% accuracy of classification of weed in palm oil plantation.
PDF Fulltext XML References Citation Report Citation
 RELATED ARTICLES:
  •    An RFID-based Variable Rate Technology Fertilizer Applicator for Tree Crops
How to cite this article:

Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa , Aini Hussain and Saifudin Razali , 2008. Scale Invariant Feature Transform Technique for Weed Classification in Oil Palm Plantation. Journal of Applied Sciences, 8: 1179-1187.

DOI: 10.3923/jas.2008.1179.1187

URL: https://scialert.net/abstract/?doi=jas.2008.1179.1187

COMMENT ON THIS PAPER
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Curve Bottom