• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Journal of Applied Sciences
  2. Vol 1 (4), 2001
  3. 438-442
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Journal of Applied Sciences

Year: 2001 | Volume: 1 | Issue: 4 | Page No.: 438-442
DOI: 10.3923/jas.2001.438.442

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Article Trend



Total views 172

Search


Authors


Asad A. Khalid


Keywords


  • epoxy resin
  • fiber
  • glass fiber
  • cotton fiber
  • energy absorption
  • hybrid composite material
Research Article

Finite Element and Experimental Analysis for the Performance of Hybrid Composite Tubes under Crushing

Asad A. Khalid
An experimental and finite element analysis for axial crushing of hybrid composite tubes of different fiber combinations as cotton, glass and carbon has been carried out throughout this investigation. One size of tube has been selected with a length of 110 and 90 mm diameter. This composite tubes were fabricated using the filament winding process. Cotton, glass and carbon fibers were selected to be the reinforcement materials. While epoxy resin and hardener have been used to form the matrix required for the fabrication of the composite tubes. All the composite tubes were fabricated from six layers. The first three types of tubes were of fully cotton, fully glass and fully carbon type fibers. The other three tubes were done by using all the three types of fibers to form a hybrid type. Each two layers have been made of the same type of fiber. Compression tests were carried out for all the tubes fabricated. Three tests were done for each type in order to get better results consistency. Load-displacement graphs were drawn for each test. The initial crushing and mean loads were obtained for each case and then drawn against the type of hybrid. The specific energy absorption has also been plotted for each case. Finite element analysis for tubes of the same dimensions and materials were done for the elastic behavior region. A comparison was done for the tested composite tubes between the finite element and the experimental results. Results obtained from this study shows that carbon fiber tubes stands higher load than glass fiber and cotton fibers. For hybrid types tested, tubes with the external layer of carbon shows higher strength than those of internal carbon fiber layers. It has also been found that the difference between the experimental and finite element results at the elastic region of load-displacement response falls in the range of 1.3 to 14%.
PDF References Citation

How to cite this article

Asad A. Khalid, 2001. Finite Element and Experimental Analysis for the Performance of Hybrid Composite Tubes under Crushing. Journal of Applied Sciences, 1: 438-442.

DOI: 10.3923/jas.2001.438.442

URL: https://scialert.net/abstract/?doi=jas.2001.438.442

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved