• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. International Journal of Pharmacology
  2. Vol 12 (1), 2016
  3. 19-27
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

International Journal of Pharmacology

Year: 2016 | Volume: 12 | Issue: 1 | Page No.: 19-27
DOI: 10.3923/ijp.2016.19.27

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Article Trend



Total views 137

Authors


Byeal-I Han


Michael Lee


Keywords


  • BRAF mutation
  • G2/M arrest
  • glioma
  • p27Kip1
  • p53
  • Paclitaxel
Research Article

Paclitaxel-Induced G2/M Arrest via Different Mechanism of Actions in Glioma Cell Lines with Differing p53 Mutational Status

Byeal-I Han and Michael Lee
A major concern with regard to glioma treatment arises from the fact that high-grade gliomas are insensitive to the majority of anticancer therapies. The aim of the present study was to investigate anti-proliferation potential of the mitotic inhibitor paclitaxel in three glioma cells with different BRAF mutation status. The U-87-MG cells were found to be more resistant to paclitaxel than other two glioma cell lines T98G and DBTRG-05MG, suggesting that the response of glioma cells to paclitaxel is not affected by the BRAF genotype. In addition, despite the induction of both apoptosis and autophagy in all glioma cell lines tested, our study has not specifically addressed the correlation of apoptosis and autophagy induction with growth inhibition. Instead, we found that paclitaxel caused a remarkably significant G2/M arrest in response to paclitaxel in T98G and DBTRG-05MG cells, whereas, less significant G2/M arrest was detected after paclitaxel treatment in U-87-MG, which exhibited more resistant to paclitaxel than other two cell lines. It is observed that T98G cells with mutant p53 progress through G0/G1 checkpoint and greatly accumulated in the subsequent G2/M phase. In case of DBTRG-05MG cells with wild type p53, paclitaxel-induced growth inhibition displayed characteristics of p27Kip1-dependent G2/M arrest. In this study data suggest that paclitaxel-induced growth inhibition of glioma cells is tightly correlated with the G2/M arrest regardless of p53 mutation status.
PDF Fulltext XML References Citation

How to cite this article

Byeal-I Han and Michael Lee, 2016. Paclitaxel-Induced G2/M Arrest via Different Mechanism of Actions in Glioma Cell Lines with Differing p53 Mutational Status. International Journal of Pharmacology, 12: 19-27.

DOI: 10.3923/ijp.2016.19.27

URL: https://scialert.net/abstract/?doi=ijp.2016.19.27

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved