Subscribe Now Subscribe Today
Science Alert
 
FOLLOW US:     Facebook     Twitter
Blue
   
Curve Top
Asian Journal of Scientific Research
  Year: 2013 | Volume: 6 | Issue: 1 | Page No.: 1-15
DOI: 10.3923/ajsr.2013.1.15
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Investigation on MEMS-based Piezoelectric Energy Harvester Design with Aspect of Autonomous Automobile Sensors
M.S. Bhuyan, Masuri Othman, Sawal Hamid Md Ali, Burhanuddin Yeop Majlis and Md. Shabiul Islam

Abstract:
Exponential progress in Microelectromechanical Systems (MEMS) miniaturization feasibility and ultra-low-power electronics to date, micro sensors require so small energy that may be simply harvested from sensors ambient environment. To power-up sensors, batteries and chemical fuel sources may be considered. However, it is impractical to power-up automotive sensors through wired means because they derive their self-worth through their distribution and mobility. Moreover, if battery is used, questions of lifetime, design complexity, costs etc arise. The key objective of our research was to design and fabricate a micro piezoelectric energy harvester for converting low-frequency vibrations into electrical power. In this review paper, we have investigated most recent micro piezoelectric harvesters at depth, with focus on design structure and output characteristics. Contrary to designs that follow cantilever structure to use the bending strain on the piezoelectric beam, a novel design is required to be investigated as sensors power source instead of conventional batteries. As in automotive ambient environment, energy harvesting device will be in direct contact with driving force and ambient acceleration amplitudes will be large enough for previously reported cantilever based design. In this regards, this research will explore new geometries to utilize tensile stress/strain on piezoelectric film instead of cantilever bending strain. The harvester will be modeled in CoventorWare. To realize an efficient autonomous energy harvesting platform, it is also necessary to integrate ultra-low-power electronic circuitry with harvesting device. The electrical schematic will be simulated in Cadence Virtuoso Spectre. A short discussion on energy harvester under development followed by research methodology is presented.
PDF Fulltext XML References Citation Report Citation
 RELATED ARTICLES:
  •    Thermal Model for Harvesting Waste Heat From Microprocessor using Shunt Configuration
  •    Piezoresistive Pressure Sensor Design, Simulation and Modification using Coventor Ware Software
  •    TPMS Data Analysis for Enhancing Intelligent Vehicle Performance
  •    Characterization of MEMS Automotive Sensor for Tire Pressure Monitoring System
How to cite this article:

M.S. Bhuyan, Masuri Othman, Sawal Hamid Md Ali, Burhanuddin Yeop Majlis and Md. Shabiul Islam, 2013. Investigation on MEMS-based Piezoelectric Energy Harvester Design with Aspect of Autonomous Automobile Sensors. Asian Journal of Scientific Research, 6: 1-15.

DOI: 10.3923/ajsr.2013.1.15

URL: https://scialert.net/abstract/?doi=ajsr.2013.1.15

 
COMMENT ON THIS PAPER
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

       

       

Curve Bottom